NASA-CR-193108

-
S
—
D"
i [——
—
—

=
_— R

N93-28320

THE THEORY QOF

(NASA-CR-193108)

 West Virginia University Research Corporation

Research Activity No. RB.10:

Jon Beck

;\7’0 /*7/5@7/:
May 1, 1993 GrAVT
J VT el -

Jo 7280

p. 5‘9‘

Cooperative Agreement NCC 9-16

& by

(Research Inst.

g and Information

INTERFACE SLICING
for Computin

Systems)

Unclas

48 p

0167280

G3/61

RBSE: Cqmpqnent Classifiqation Support

__ NASA Technology Utilization Program
e __MASA Headquarters

J;‘fiii‘ .

- _©6_¢

S \ 7 [7
e N — E >

j Research Institute for Computing and Information Systems
- University of Houston-Clear Lake

WHITE PAPER -

~ The RICIS Concept

- The University of Houston-Clear Lake established the Research Institute for
= B Computing and Information Systems (RICIS] in 1986 to encourage the NASA
&, Johnson Space Center {JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engincering and sclence responsi-
bilitles. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to

conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway afliliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge n the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

[(Wi

"

i

L.

Bl WL

Lt 3

i

Wi/l

R I

L Lo NG R B ol

K.
ul ol

m.u i b

(7 £

lw

lr L
|

RICIS Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Jon Beck of West Virginia University. Dr.
E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the NASA Technology Utilization Program, NASA
Headquarters, Code C, through Cooperative Agreement NCC 9-16 between the
NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
research coordinator for this activity was Ernest M. Fridge III, Deputy Chief of the
Software Technology Branch, Information Technology Division, Information
Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.

'
|

(!

- A 11/ B¢

I
[

aino wrowmn g

LN

1y

.. The Theory
of Interface Slicing

Jon Beck
Department of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506
beck@cs.wvu.edu

1 May, 1993

1 Introduction

1.1 Statement of the Problem
Interface slicing is a new tool which has been developed to facilitate reuse-based software
engineering, by addressing the following problems, needs and issues.

1.1.1 Size of Systems Incorporating Reused Modules

The reuse of tested, robust artifacts from previous software development efforts can result
in savings in the current development effort due to the time saved both from the creative
effort proper and also from the reduced maintenance needed for the reuse of proven,
tested components [9]. There is a problem with reusing some artifacts. Typically any
particular software system will require only a subset of the functionality of a given
repository component. This is especially likely to be true in three cases. The first is the
case of a component written to be a general component in a non-domain-specific reposito-
ry. Such a component which was written for reuse will contain all possible anticipated
functionality, the better to accommodate all possible anticipated applications. The second
case in which only a subset of a component would typically be desired is that of a compo-
nent in a domain-specific repository which was originally written for a specific system.
Such a component will typically have custom functionalities tailored for its original target
system which will not be needed when it is used in a new application. The third case is
that of a component which has been used and reused many times, each time having a bit
more functionality added to it. This is exemplified by the creeping featurism of Unix
programs. Long-lived components can accrete numerous operations and functlonahty over
their lifetimes, in what is called the lntchen smk syndrome. .

In most software development environments, when a reusable module is incorporated into
a software system under development, the entire module is imported into the software
system. This includes all visible and hidden variables, subprograms, and types. This is
easily demonstrated by a megabyte-sized “Hello, world” Ada program. Standard size
optimizers and dead-code detectors cannot address this size problem because modules are
separately compiled without any knowledge of how the module will be used. Only at
system composition time is there sufficient knowledge to determine what part of an

imported module is needed, and what part is useless in this specific system.

1.1.2 Knowledge Requirements for Program Modification

If a reusable module provides desired functionality in a current development effort, but
results in a very large system due to unused extra functionality, then a solution is to
remove the unnecessary functionality and retain only that which is desired. However,
“removing the unnecessary functionality” means modifying a module, an act which opens
a Pandora’s box of difficulties. Modifying a module requires extensive knowledge about
the module. According to Kozaczynski, et al. [17], program modification is a knowledge-
intensive activity, far more than simple editing. When maintainers modify a program, it
is insufficient for them to narrowly understand only the syntax and semantics of the code;
rather, the maintainer must gain an general understanding of its functionality — what it

is supposed to do — before maintenance can commence. The effort involved in under-

-1-

w6 wanm o &) e

fim

ARV

L[]

Wi

e { {r .

i

4

I
1l

{l
{

]
i

{!

<l

Tl -

A\

€

I

y
|

{

standing a reusable module sufficiently well to modify it nullifies much of the savings
attributable to its reuse in the first place. Another portion of the savings of reuse is
consumed in the necessity of retesting the modified module. The danger of introducing
new bugs into code as a result of modification is famous in the software engineering
community to the point of anecdote. Furthermore, modifying a component for the purpose
of compositional reuse runs counter to the concept of verbatim reuse. This concept
discourages modifications to distributed copies of repository components with the atten-
dant difficulties of maintenance and consistency, and instead calls for modifications to be
made only to the base repository component for perfective or corrective reasons.

Interface slicing does not address the entire problem of software modification. Rather, it
is narrowly focused on providing the ability to modify a reusable module by removing
unnecessary functionality without the attendant necessity of having extensive knowledge
of the module before the modification takes place and without having to extensively test
the module after the modification has taken place. This action does not violate verbatim
reuse, because the modification is an automatic transformation at the time of system
composition, in the same spirit as compilation, and does not alter the logical design or
structure of the reused component.

1.1.3 Program Understanding for Reverse Engineering
Many modifications do not fall into the above category. There are times when it is

necessary to thoroughly understand an existing module so that its manual modification
can be undertaken. The discovery or recovery of that knowledge falls within the scope of
reverse engineering. While many tools and techniques exist for the acquisition of
knowledge about existing systems, there are gaps in the capabilities or efficiencies of
those tools and techniques. In particular, there is an unexploited strategy which reduces
the amount of knowledge needed for modification of a module by reducing its size and
complexity, as opposed to the conventional strategy of employing a more powerful tool to
gain more knowledge about the module. This new strategy entails the need for a tool or
technique which reduces the burden of module comprehension for modification by
reducing the size and complexity of the module to be modified.

There are situations in which it is not possible to reduce the size or complexity of a
module, but in which there is still a necessity for discovering knowledge about the

module. Again, there are existing techniques for this, but their coverage is not perfect for
all situations. Therefore, there is a general need for a tool which aids in the acquisition of
certain types of knowledge about an existing module, distinct from the technique which
reduces the module size. '

1.1.4 Module Granularity and Domain Management

The DoD Software Reuse Vision and Strategy defines the concept of centrally managed
reuse within a domain [11]. According to this plan, reuse-based software engineering is to
be administered from a domain management office which will perform the domain
engineering tasks of domain analysis, architecture development, and the creation and
recovery of reusable components. In addition to other tasks, the domain manager will
assist application engineers by disseminating modified versions of repository components
for the maintenance of systems which were developed from the domain model using
repository components. When maintenance is performed on a repository component by a

-9.

domain engineer, the domain manager is responsible for updating clients of that compo-
nent [21].

In a reuse repository environment, there are conflicting benefits and drawbacks due to
component size or granularity. On one hand, there are specific benefits from fine
component granularity. A system created by composition of reusable components can be
viewed as a pyramid of components [24] in which the lower levels consist of small, non-
domain-specific components which are easily understood and which contain little des1gn or
architectural knowledge relating to the complete system. These small components are
easiest for the application engineer to reuse; reuse at this level results in a large number
of components being reused. Also, since these small components are relatively non-
domain-specific, each component is applicable to many domains, resulting in more
efficient creation and recovery of reusable components for the domain manager and
engineer. If the repository mechanisms include some facility for Ioca]izing the retesting
and revalidation of modified components, then the domain manager’s post-modification
task of client update is easier if the modification is to a small component rather than to a
large component. This is meant in the sense that if some functionality x is supplied to
clients, and x is modified, then fewer clients are affected by the change if x is contained in
a small component than if it is contained in a large component.

On the other hand, a very strong benefit of coarse component granularity is a greater
payoff for the reuse of each component, as more domain and design knowledge is captured
in a large component than in a small, resulting in a smaller input of application knowl- -
edge by the application engineer.

These conflicting benefits of fine and coarse component granularity indicate a need for a
tool which can balance the two and provide the benefits of both in a single reuse reposito-
Ty S8Cenario.

1.1.5 Time and Space Complexity of Conventional Slicing
A final area which calls for the services of a new tool is that of conventional program

slicing [25]. As evidenced by the current interest in conventional program slicing for
many applications (e.g., [2,5,13]), slicing is a worthwhile technology. Unfortunately,
conventlonal program slicing can be an expensive operation, varying in time complexity
from O(n?) to O(n), depending upon the slicing technique employed, where n is the
number of program statements, expressions, or quadruples. Dependence graph represen-
tations of programs, employed by many conventional slicing techniques, can occupy
several times as much space as occupied by more traditional representation forms,
especially when interprocedural data and control flow is included in the representation.
Because of this, it may be difficult to apply conventional program slicing to large, real
systems [22]. Interfaee slicing, however, can be performed in at most two passes over the
source code, glvmg a time requirement of O(n), where n is the number of program
elements. A piece of code which is too large or complex for conventional program slicing
may be sufficiently reduced in size by a preliminary pass of an interface slicer to enable
subsequent conventional slicing. In such a case, a wedding of the two slicing technologies
would produce tangible benefits. Even when oonvent:lonal slicing is possible, however, it
may not be necessary. Conventional slicing is at the level of statements and expressions,
which is a very detailed level. In programs composed of very many small subprograms,

-3-

2Rl @in wME @ € w4 ek w4

&

V1T

1]

LIS { U

e

.
1>

o

(

1! () TN |

!

I

1!

r1

{

ny
fil

o

@i

slicing at the subprogram level may yield slices small enough for immediate comprehen-
sion, obviating the need for a more detailed, difficult and expensive slicing at the state-
ment level.

1.2 Statement of the Solution

This paper is based on the thesis that interface slicing is a way to approach all of the
problems, needs, and concerns listed above with a single technique. Specifically, we
assert that:

> Interface slicing theory exists and has a mathematical basis which can be demon-
strated. Certain structures of existing programs can be represented as interface
slices. There is a mapping between the manipulations of the mathematical
representation of interface slices and the semantics of the program structures
being represented, such that inferences made or conclusions reached based on the
mathematical representation imply corresponding inferences or conclusions in
program semantics.

> Interface slicing shares a common intuitive and philosophical background with
conventional slicing.

> Interface slicing differs from conventional slicing both mathematically and proce-
durally.

> The problems in language theory and software engineering for which conventional
and interface slicing are appropriate intersect but neither is a subset of the other.

The specific contribution which this paper makes is the definition of a new form of static
program analysis called interface slicing.

2 Definitions and Representation Issues

2.1 Terminology and Definitions

In this paper, we will employ the following conventions unless we explicitly note other-
wise. A subprogram is a unit of code; the term is intended to denote regular procedures
and functions, including “main” programs, and where appropriate, more exotic code units
such as Ada tasks. If the language under discussion permits, a subprogram may be
specification, body, or both. If subprogram A contains subprogram B nested within it, a
reference to A will in general nrot include any reference to B unless B is explicitly
referenced. A package is a collection of subprograms and implies at least the possibility of
separate compilation, with allowances made for language systems which do not have the
capacity of separate compilation. Package includes the Ada notion of package but is not
limitedtoAda,asitalsomaybeusedtomeanasetofunitsinastandardobjectlibrary.
Module is used as a general term to include both subprogram and package as described
above, when specifying either would be too restrictive. Component specifically refers to a
module potentially residing in a reuse repository. A component is thus a code asset of a
repository, either before or after it has been reused by incorporation into a software

-4-

system. We use the term element to mean a named programmatic entity. Types,
structures, variables, subprograms, tasks, and exceptions are all included in this term,
but statements, even labeled statements, are specifically excluded.

We describe certain characteristics of a program element by using the terms visible,
hidden, unprotected, and protected. A program element is visible if it is visible and
available at least for examination by non-privileged portions of the software system. We
use the term hidden to refer to a program element which is not visible outside the scope
of its module. An element is unprotected if there is no language mechanism applied to it
which prevents non-privileged access_to its internal structure, while an element is
protected if some form of language-based mechanism, not including simple scope, is used
to limit access to its internal structure by non-privileged portions of the system. Thus,
visible and hidden refer to access to the element’s name, while unprotected and protected
refer to an element’s internal structure. For example, from the standpoint of a main
Pascal program, a local variable within a subprogram is visible and unprotected, as only
the scoping conventions of the language make the variable inaccessible to the main
program. As another example, the variable MyVariable declared on line 3 of the Ada
package specification shown in Figure 1 is visible and protected. It is visible because it is
available by name to any part of the system which withs this package, and protected
because its internal structure is not available outside the package. Finally, type MyType2
on line 6 is hidden and protected, as neither its name nor its structure are visible outside
the package. The reason for making a point of using this terminology is twofold. First,
these concepts are language-independent, even though they have been implemented to
various extents in different languages. However, as the implementations are generally
not pure, we do not wish to use terms of a specific language, in order to avoid the implica-
tion that we are referring to a specific language’s implementation of one of these concepts.
Second, in discussing the mechanisms of interface slicing, there are important consid-
erations based upon a program element’s visibility and protection status before and after
the slicing transformation. Since these considerations are language- independent, it is
important that colorations from existing language implementations not creep into the
discussion.

2.2 General Theoretic Concepts package MyPackage is

1

2 type MyTypel is private;
2.2.1 Sets and Graphs 3 MyVariable: MyTypel;
For subset” notation, we use A ¢ B to indi- 4 ce
cate that set A is a subset of, and possibly 5 private]
the same as, set B, and A c B to indicate 6 type MyType2 is ...;
that A is a proper subset of B so that AaB 7

The cazrdmahty of A is denoted by |A|. A 8 end MyPackage;
graph® is a pair (N,A) where N is a finite : ——
nonempty set of nodes or vertices, and _ Fll gurem 1 Example for visibility and pro-

A;NxNxsasetofdlrectededgesorarcs

1 Unless specified otherwise, all sets herein are finite.
2 Unless spemﬁed otherwise, all graphs herein are directed graphs.
-5-

[

W W

CR

ain

¢ 111

{

!

A\

I)

@l |

()

i

if

e

\

0

{ !

1

|

the head or target node y, making x a predecessor of y, and y a successor of x. The number
of predecessors of a node is its in-degree, and the number of successors is its out-degree.
Since the edges are members of a set, a graph may have at most one edge from a given
node x to another node y. A structure which allows multiple edges from one node to
another is a multigraph. In other words, a graph consists of a set of nodes and a set of
edges, while a multigraph consists of a set of nodes and a bag of edges. A path from x; to
x, is a sequence of length £ of vertices (x,, x,,...,x;) with x,e N, 1 <i < k-1 such that each
pair x;—x;, ,€A. Two graphs G, and G, are isomorphic, denoted G, = G, iff there exists a
one-to-one correspondence between their sets of nodes and a one-to-one correspondence
between the sets of edges such that the corresponding edges also agree on the correspond-
ing source and target nodes.

2.2.2 Partial Orderings and Lattices

A reflexive, antisymmetric, transitive relation on a set S is a partial ordering, denoted by
c. The pair (S,c) is a partially ordered set, or poset. For a given poset (S,c), = denotes
the reflexive reduction where = = c - {(x,x)|xe S}. Given a poset (S,c) with a,b € S, then a
Join or least upper bound of a and b is an element c:

ceS | acc A bce A ~3x(xeS Aacxce A boxce)

Similarly, a meet or greatest lower bound of a and b is an element ¢ such that:

ceS | cca Accd A ~Jx(xeS A ccxca A ccxcb)

If a and b have a unique join, it is denoted a u b; a unique meet, a n b. A set of pairwise
incomparable elements of a poset is called a cochain.

A lattice L is a poset, every pair of elements of which have a unique join and meet; the
lattice is denoted by the triple L = (S,u,n). An element a of a lattice L is a minimal
element if there does not exist an element b of L such that 6 ca. A minimal element q is
also a least element if a c b for every b in L. If L has a least element, it is unique.
Similarly, a is a maximal element if there does not exist a b in L such thata = b, and a
unique maximal element a is a greatest element if b c a for every b in L. Each element of
the poset is said to be contained in a node of the lattice. Sometimes the node and the
element it contains are used interchangeably.

The power set of a set S, denoted 25, is the set of all subsets of §, ie., 25 - (T |TcS) A
particular lattice structure of interest in this paper is the following. Given a finite set S
and the usual set union and intersection operations denoted by U and N, the poset (25,c)
is the basis for the lattice (2°,Uf). Each node of this lattice contains a unique subset of
the elements of 2°. We will often refer to this structure as a subset inclusion lattice®.
This lattice is of interest here because if S is the set of all statements of a program then
25 is the set of all subsets of the program statements. Since a slice is a subset of program

3 (25,UN) is also known as a Boolean algebra, and is characterized by being a lattice
with distributivity, existence of greatest and least elements, and complements.

-6-

statements, then every slice corresponds to an element of 25, and thus to a node in the
lattice (2° U,N). This lattice is therefore a convenient structure for discussing slices of a

program and their relationships.

This lattice may be depicted using a Hasse diagram as a
graph in which the greatest element, the set S, is a node
of in-degree 0, and the least element, &, is a node of out-
degree 0. An edge a—b is drawn in the diagram iff b c a
and there does not exist a node ¢ such thatb ccca. In
this case, a is considered the parent of b, and b the child
of a. Notice that this excludes the possibility that two
separate nodes in the lattice contain the same element.
For example, given the set S = {1,2,3}, the lattice

L = (25UN) is shown in Figure 2.

Given a poset (A,c), the relation c defines a set of or-

l\nf/:3
%)

dered pairs of elements of A. Given a set B ¢ A, then
some of the ordered pairs of = may also be ordered pairs
of elements of B. The set of those elements of = which
consist of ordered pairs of elements of B is called the

Figure 2 Power set lattice
for {1,2,3}

restriction of c to B, and is a partial ordering of B. If the poset (A,c) is a lattice, the new
poset (B,c) is not necessarily a lattice. However, if B includes at least the greatest and

least elements of A, then B must also be a lattice. For example, let A be
example above, so that the poset (A,g) is shown in Figure 2, and let B = {{1,2},{2,3}}. Then

as in the

(B,c) is a poset, but is not a lattice. However, if we consider B’ as B augmented with the
greatest and least elements of A, so that B’ = {&,{1,2},(2,3},{1,2,3}}, then (B’,C) is a lattice.

2.2.3 Dependences

According to Podgurski and Clarke [19), dependences* are
relationships among program statements and are of two
types, control and data flow (or simply data) dependences.
In a program, two types of situations create dependences
between two statements, or between a statement and a
predicate. In Figure 3, a control dependence exists between
the predicate A on line 2 and the statement B of line 3; the
execution of B is control-dependent on the value of A be-

cause the value of A immediately controls the execution of B.

In Figure 4, the assignment statement on line 3 is data
dependent on the assignment statement on line 2, because
the correctness of C’s value in line 3 depends upon the prior
execution of the statement on line 2. Thus a data depen-
dence exists between two statements when a variable in one
may have an incorrect value if the order of execution of the
two statements is reversed. Another way of stating this is

1 begin

2 if A then
3 B;

4 end if;

5 end;

Figure 3 Control depen-
dence

1 begin

2 C := £(D);
3 E :=C;
4 end;

Figure 4 Data dependence

4 Some authors use dependency, singular, and dependencies, plural.

-7-

i wma

L wm

4

A

Al

4

\ Y

g

i Gl

LN

-

that one statement is data dependent upon another if data can potentially flow from the
latter to the former in a sequence of assignment statements.

2.3 Issues of Program Representation

In one strict view, only a set of machine instructions in a computer’s memory can be
termed a “computer program”. But this strict interpretation is usually relaxed so that
various program representations are spoken of as being, or being equivalent to, computer
programs. Common program representation schemes include high-level source code,
pseudocode, and flow charts; the purpose of these various representation forms depends
upon the context and may include human readability, annotation for verifiability, and
transformation for application to a different platform such as a parallel multiprocessor.
In the context of program slicing, program representations are used to facilitate the auto-
mation of slicing. For a very simple program, a slice can be prepared by hand. But with
increasing size and complexity of the program, there is increasing need to employ the
assistance of automation. Current automated slicing techniques require that information
gleaned from a source code form of the program to be sliced be transformed into some
different program representation during the slicing process. Various program representa-
tion schemes have resulted from the search for ever more complete and efficient slicing
techniques. In the discussions of program representations which follow, it is important to
remember that there is no single correct way of building, say, a dependence graph
program representation, nor is there a single exact set of information which must be
available to enable slicing.

A program which is to be modeled with one of these representations is written in some
language. While this discussion concentrates on executable languages, we do not wish to
exclude the possibility of including non-executable forms such as pseudocode or formal
specifications. Each language has its own peculiarities which affect the way it can be
represented, and the form of the representation. In the explanations of the different
representation mechanisms below, it is useful to keep in mind the differences in languag-
es. For example, C has a switch statement structure which allows multiple exits, but C
has no nested subprograms; Pascal has a regular, partitioning, single-exit case statement,
but also has nested subprograms; FORTRAN has an equivalence statement parameter
passing mechanism which allows variable aliasing by array overlap; Ada has various
synchronization mechanisms for tasking. There probably is no perfect universal program
representation scheme because each of these language features may call for a somewhat
different representation mechanism. Conversely, a program representation may well
serve to bridge the gap between disparate languages.

It is common to represent programs as graphs and lattices pictorially with closed shapes
standing for nodes and directed lines representing edges. For simplicity, in fact, the
picture is often spoken of as “being” the graph or lattice, or the graph as “being” the
program, but it is important to keep in mind that the picture or graph drawing is only a
representation of an abstract mathematical or programmatic entity. The model may be
imbued with a set of desired semantics, with the nodes and arcs drawn in various shapes
and given various labels, provided that there is an unambiguous and consistent mapping
between the semantics and the model such that the mathematical or syntactic integrity of
the model is maintained. In this case, results derived from mathematical proofs and
manipulations on the model give strong credence to the corresponding semantics.

.8-

3 Interface Slicing

3.1 Introduction
To date, several major forms of program slicing have been developed. Listed briefly, the
major forms and some common techniques of performing them are:

> Static Slicing
> Incremental flow analysis [25]
> Dependence graph reachability [15]
> Information-flow relation equations [8]

> Dynamic Slicing
> Incremental flow analysxs (16]
> Dependence graph reachablht'y [3]

These forms will be referred to collectlvely in this paper as conventional shcmg,

contrast to the new form of slicing which is presented here. In this paper,® we present
and develop an entirely new form of program slicing, interface slicing. This form of slicing
is also discussed by Beck and Eichmann [6,7,12].

Intuitively, an interface slice may be viewed as a subset of the behavior of a module,

similarly to the original notion of the conventional static slice. However, while a conven-

tional slice seeks to isolate the behavior of a specified set of program variables, even

across module boundaries, an interface slice seeks to isolate specified functionalities which
. a given module exports to its containing software system.

The purpose for which interface slicing was developed is very different from that for which
conventional slicing was developed. While conventional slicing was originally designed
primarily for debugging and comprehension, interface slicing was primarily investigated
as a tool for use in a reuse repository environment to 1) enhance the reusability of compo-
nents in the repository and 2) improve the quality of the system which results from a
software development-with-reuse effort. But just as the role of conventional slicing has
expanded to embrace many areas of both forward and reverse software engineering, so we
see a broad applicability of interface slicing to software engineering efforts in general,
including all phases of new system development, as well as comprehension, maintenance,
redocumentation, and reengineering of legacy systems.

3.2 A Simple Example

We present here a simple example designed to g'lve the flavor of interface slicing. The
example illustrates one application of interface slicing, in which it is used to project a
subset of an Ada package’s functionality.

Consider a simple abstract data type (ADT) implemented as an Ada package which
exports the operations necessary to implement a boolean toggle and which maintains the

5 Much oi' 7tr.he matenal in th;s sectioﬂ éppeared in a condensed form in [7].
-9.

g [0

410 Wy am Qi mw

L am

CTHT

|

g1 4

oG

400 1

L1

!‘ll‘ ! ”
i

f

]

'K

L

Qi g

g

I‘!l!
T

Consider a simple abstract data 1 ackage togglel is
type (ADT) 1mp1gment.ed as an 2 ° function on return boolean;
Ada pgckage which equrts the 3 function off return boolean;
operations necessary to imple- 4 procedure set;
ment a boolean toggle and which 5 procedure reset;
maintains the state of the toggle. 6 end togglel;
An example of such an ADT is 7 package body togglel is
given in Figure 5. This package 8 value: boolean := false;
exports the operations on, off, set, 9 function on return boolean is
and reset. On and off are query 10 begin
operations which examine the %% geturn value = true;
i end on;
:?:f ::et};:et:igi};swvtuhlii}fe;ﬁ%y 13 function off return boolean is
the state of the toggle. The actu- %g beg;g 0 value = false:
al state of the toggle is main- 16 end O‘é £ - d
tained in the hidden variable 17 procedure' set is
value. Suppose that a program 18 begin
under development needs the 19 value := true;
functionality that this toggle ADT | 79 end set;
provides. In a standard software | 21 procedure reset is
development scenario in which 22 begin
this package is available in the 23 value := false;
repository, the specification of the | 24 end reset;
package in lines 1 - 6 would be 25 end togglel;

available for inspection. After
being selected from the repository
as the appropriate component,
the package would be incorporated into the software system. Toggle! would be withed in
the appropriate scope of the system under development which needed the toggle function-
ality, and the system would then have all the functionality, all four operations, of the
toggle package available to it.

Figure § A boolean toggle package

However, suppose that in the course of developing a system we find that we need, not all,
but only some of the functionality of the fogglel package. For this example, suppose that
we have need of only the on, set, and reset operations, but do not need the off operation.
In a standard development scenario, we have two options, neither of which is ideal. The
first option is to incorparate the complete toggle package in tofo, exactly as described
above. The disadvantage of this option is that in the finished software system, the off
function becomes “dead” code in the sense that it is never called or executed. This is the
kitchen sink syndrome which characterizes development in languages such as Ada. The
system is larger than necessary in both source and executable forms, taking extra time
and space to compile and link. Furthermore, the dead code remains for the life of the
system (which may span decades), constantly serving as a source of extra time and
confusion for the software engineer charged with maintaining the system. The confusion
caused by dead code is due to the natural tendency to assume that each line of code in a
system actually does something. This assumption is violated by dead code.

-10 -

Alternatively, the second option is to manually edit the source code of togglel and delete
the off operation from the body and specification of the package. The disadvantage of this
option is that the editing operation requires full code comprehension of the togglel
package and involves the very real danger of introducing logical bugs into the package
due to hidden linkages and dependences and introducing syntactic bugs due to typing or
editing errors. In addition, stating the option of manually editing the source code

assumes that the developer has access to the source code. This is not necessarily the case,

especially in the context of a reuse repository which contains proprietary software which
has been licensed for (re)use, but not for copying, reverse engineering, or modification. It
is easy to propose a repository structure which gives full source code access to an auto-

mated interface slice tool, while restricting human access to just the specification, thus
preserving the integrity of proprietary software rights.

Interface slicing provides a third alternative which does not have the disadvantages of the
two options above. We wish to use a subset of the behavior of, or a subset of the function-
ality provided by, a component. All of the functionality exported by an encapsulated
module is, by definition, described in the interface of that module, but we are interested in
a subset of that functionality. In the case of an Ada package, the interface is the package
spec1ﬁcat10n In effect, we wish to remove, i.e. slice away, the unneeded functionality, as

in manual editing of t.he source code, but without the attendant problems of editing. By
examining only the specification of the module we know that the module contains some
functionality that we want in our system which is under development, but we also know

that it contains more functionality than we want.

We thus invoke the notion of an inter-

face slicing tool which takes as input 1) | Package togglel is

a complete module consisting of both
an interface specification and a code
body, and 2) a list which enumerates
the subset of the module functionality
which we desire. This list is the inter-
face slicing criterion.

Definition 1 Interface Slicing Criteri-
on. A possibly empty list of module
elements which the module makes
visible and available at least for refer-
ence to the surrounding system. O

The tool produces as output a slice, a
new module which is a subset of the
original, but which contains all and
only the code necessary to support the
functionality specified in the slicing
criterion of desired operations. In the
example above, we desired the func-

tionality of the operations on, set, and reset in the togglel package, but not that of off. A

function on return boolean;
procedure set;
procedure reset;

end togglel;

package body togglel is

value: boolean := false;
function on return boolean is
begin
return value = true;
end on;
procedure set is
begin
value := true;
end set;
procedure reset is
begin
value := false;

end reset;
end togglel;

Figure 6 togglel sliced on {on,set reset)

slice of togglel on the slicing criterion {on, set, reset) is shown in Figure 6. Note that in

-11-

(I

[T

Wy e s@m A W0 ww wmh =0 ANE WhE W EIN e

i

I

!

i

Lt

4

ne v

Wow b

et

o]

¢
i

U { L) " 1M1

1

this simplest example, the slice consists merely of the original package without the un-
wanted function or its specification, just as would have been produced by manually
deleting the off procedure from the package specification and body. This simple example

case which does.

" does not have any linkages or dependences among its operations; we will now discuss a

As a second example, consider

the slightly more sophisticated %
boolean toggle which is imple- 3
mented by the package shown in 4
Figure 7. In addition to the oper- 5
ations of togglel, this package 6
also exports the operation swap 7
which reverses the current value 8
of the toggle. Suppose that we 9
wish to include in our software 10
system just the functionalities of 11
the operations on and swap, 12
corresponding to a slicing criteri- 13
on of {on, swap). In this situ- 14
ation, a naive editing of the tog- }2
gle2 package to remove off, set, 17
and reset will no longer suffice, 18
because swap has dependenceson | 1g
on, set, and reset. In order to in- 20
clude on and swap, we must also 21
include set and reset. The result 22
of interface slicing toggle2 on 23
{on, swap) is shown in Figure 8. 24
Note that while set and reset no 25
longer appear in the interface, 26
they do appear in the body of the 27
sliced package. %g
It is important to realize that the gg
specific dependences among 32
swap, on, set, and reset in this ex-

package toggle2 is
function on return booclean;
function off return boolean;
procedure set;
procedure reset;
procedure swap;

end toggle2;

package body toggle2 is

value: boolean := false;
function on return boolean is
begin
return value = true;
end on;
function off return boolean is
begin
return value = false;
end off;
procedure set is
begin
value := true;
end set;
procedure reset is
begin
value := false;

end reset;
procedure swap is

begin
if on then reset;
else set;
end if;

end swap;

end toggle2;

ample arise due to the specific Figure 7 A larger boolean toggle package

code implementation of the pack- o N , o

age. They are not due to the design of the surrounding software system, nor to the re-
quirements or specification of the toggle package. It is easy to envision a toggle imple-
mentation in which swap depends upon off rather than upon on, or even one in which
swap depends upon neither. This comprehension of and knowledge about the package is
required for manual editing; interface slicing is designed in part to obviate this compre-
hension requirement. With an interface slicing tool available, we do not have to know
anything about the internal dependences of the toggle package, as the slicing tool does the
dependence analysis during its operation.

-12.-

Definition 2 Interface Slice. Given a)
syntactically correct module M and an package toggle2 1s boolean
interface slicing criterion C = (e, fﬁgct (1ion or;w;‘et:_urn colean;
ey...,8;), where the e; are visible ele- procedurs pi

; . . end toggle2;
ments exported by M, an interface slice | ,3ckage body toggle2 is

S = M(C) is a syntactically correct value: boolean := false;
module with the following properties: function on return boolean is
begin
1 M(C) can be formed by deleting return value = true;
zero or more declarations or end on;
subprograms from M, procedure set is
begin
2 M(C) exports a set of elements value := true;
which are syntactically and end set; .
semantically equivalent to the procedure reset 1s
elements in C, and no other begin
oloments ' O value := false;

end reset;
procedure swap 1is

Note that this definition only allows begin

elements which are visible before slic- if on then reset;
ing to appear in the criterion, and only else set;

allows elements which are contained in end if;

the criterion to remain visible after the end swap;

slicing. (See also Section 3.6, Page 16.) end toggle2;

3.3 An Interface Slicing Mechanism Figure 8 toggle2 sliced on (on,swap)

The previous examples were based on

interface slicing being used to project a subset of the functionality exported by a package.
The examples illustrate the usefulness of interface slicing but do not indicate how it can
be accomplished. In this section, we demonstrate a method for generating the interface
slices of the previous section.

As stated above, the interface slicing tool has as input a syntactically correct module and
an interface slicing c shcmg criterion which is a list of desired visible subprograms, types, and
variables. This list is supplied without knowledge of the module implementation. The
problem at hand for the slicer is to determine from a static analysis of the module which
portions of the module it should retain in order to support the items in the slicing
criterion, and which portions can be safely deleted. In addition, it must determine which
retained portions should reside in the specification, and which should be removed from
the specification and be retained only in the body. The solution to the problem is to
perform a reachability analysis [14], based on the slicing criterion, of a dependence graph

of the package.

3.4 The Interface Dependence Graph

In the following discussion, we make the simplifying assumptlon of a language without
procedure or block nesting. We make this assumption because we wish to concentrate on
the ideas of interface slicing and avoid gettlng bogged down in laborious cases of the
different variations of nesting and scope in the various languages, none of which is new

-13 -

N e

QL Al oy xR mih

AN

'

At

and all of which is covered in the literature. For example, C++ allows a declaration to
appear anywhere a statement can, while Ada declarations must be confined to a declara-
tive part; Ada allows unlimited nesting of blocks and subprograms, while C++ does not.
Each of these variations requires different handling of scope and visibility issues, and re-
quires more language-specific treatment which is more properly treated in an implemen-
tation report. This does not, however, detract from the applicability or power of interface
slicing theory, as scope and nesting are well-understood areas of language systems.
Therefore, we assume that all variable declarations and procedure definitions are global to
the module. However, we do assume that some declarations and definitions are visible,
and others hidden. Also, we often employ Ada-centric terminology, but only out of a
desire to use consistent and familiar terminology in order to evoke a clear mental image.

The specific dependence graph required for the analysis of a package we term the
package’s interface dependence graph. The package interface dependence graph can be
constructed with at most two passes® over the source code of the package’s specification
and body in the following manner. Each node of the graph corresponds to a statement
which defines: any type (including subtypes, subranges, generics, etc.), any global variable
(including constants and generic formal parameters), or any subprogram (including
procedures, functions, tasks, and exceptions) — in short, any unique, named, global
program entity.” We here make the simplifying assumption for the purposes of discus-
sion, but without loss of generality, that there is at most one definition per statement and
per line of source code. Every node is labeled with the name of the defined program
element to which the node corresponds, and every node is annotated with various
information necessary for an unambiguous determination of the program element to
which the node corresponds. Depending upon the language under consideration, this
information may include the node’s corresponding line number in the source code, the type
signature of the corresponding program element, and, in the case of nesting, scoping and
name over-riding information. Since we are not considering nesting here, we will not
attempt to keep track of the scope of definitions in the following examples: every subpro-
gram is global to the package, and only global variables and type definitions are of
interest.

As the name implies, the edges of the interface dependence graph are dependence edges.
The edges are constructed as follows. There is an edge from node x, corresponding to
program element X, to node y, corresponding to program element Y, if X contains a
definition- or use-reference to Y. These are static reference edges. There must also be dy-
namic reference edges: if X contains a statement which has a pointer, there must be an
edge from X to every program element which contains a potential target of the pointer.
Self-edges, indicating direct recursion, are not necessary and are therefore excluded, but
indirect recursion is certainly possible, and will appear as a cycle in the interface de-

6 If there is no nesting and all definitions are placed before uses, then only a single
pass is required.

7 This does not include a renaming of an already-existing program entity. In the
case of a renaming, the slicer must keep track of the name, but not create another
node for the renamed element.

-14 -

pendence graph. The inter-
face dependence graph thus

value value

combines the information of

a standard call graph with a / \ / \
data dependence graph for on oft on oft
global (global to the pack-

age) type definitions and set resst set reset

variables. Interface depen-
dence graphs for the togglel
and toggle2 packages de-
scribed above are shown in () togglel {(b) togglel
Figure 9 (with annotations
omitted for clarity). A more

)
\

swap

formal definition of the in- -
terface dependence graph Figure 9 Interface dependence graphs for fogglel and

follows. toggle2

Definition 3 Interface Reference. Given a module M, containing uniquely named program
entities X and Y, there is an interface reference from X to Y if X # Y and either

1 X contains a statement or definition which references Y, or

2 X contains a pointer which has Y or some portion of Y as a potential target.

The interface references of X form a set denoted by iref(X). a

Definition 4 Interface Dependence Graph. Given a module M, the interface dependence
graph for M is an annotated graph G = (N,A) where N is the set of nodes x,y,... which
correspond to the uniquely named programmatic entities X,Y,..., and A € N x N {(x—>y) |
Y € irefiX)). Each node in N is annotated with the line number of the source statement in
which the name of corresponding entity is first encountered in M and sufficient name,
typemark, and scoping information to unambiguously identify the entity to which N corre-
sponds. O

In general, a package will have some visible program elements, and some hidden ones.

Hidden program elements are not available to be used in an xnterface slicing criterion;

only exported elements can be in the slicing criterion. However, hidden program elements 7

must be included in the interface dependence graph, as the transitive closure of a visible
element may flow to a hidden element. Because of this, an element’s visibility status is a
part of the definition of the slicing criterion, but not of the interface dependence graph.
Thus, with the exception that hidden elements may not appear in the slicing criterion list,
hidden elements are treated identically to visible ones during the interface slicing process.
The slicer, being a pre-compilation code transformation tool with privileges similar to a
compiler, has complete access to all portions of the source code, and thus is not hindered
by these language mechanisms.

-15 -

«

(

H;
3

G

«

.

{l

3.5 Slicing the Interface Dependence Graph

Once a package’s interface dependence graph has been constructed as described above, an
interface slice based on a given slicing criterion of desired functionality can be generated
with its aid. Starting with the nodes in the graph which correspond to the named items
in the slicing criterion, generate the transitive closure of those nodes by following the
dependence edges. The interface slice consists of the definitions and subprograms which
correspond to the transitive closure, plus any needed syntactic sugar (see Section 3.10)
required for the package structure.

For instance, consider the interface slice which this process generates for the togglel
example discussed above. That example discussed an interface slice for the toggle!
package, whose interface dependence graph is shown in Figure 9(a), based on the slicing
criterion {on, set, reset). The transitive closure of this criterion in Figure 9(a) consists of
the nodes on, set, reset, and value. This means that the slice should consist of the
subprograms on, set, and reset, and the definition of value. This was the same conclusion
reached in the intuitive consideration above, as shown in Figure 6. Similarly, the transi-
tive closure of the slicing criterion {on, swap) in Figure 9(b) consists of the nodes on, set,
reset, swap, and value, corresponding to the subprograms and variable by those names in
the package toggle2. This also matches the conclusion reached above, as shown in

Figure 8.

3.6 Position of Retained Elements .

After the program elements to be retained are identified by the dependence analysis of
the interface dependence graph, their final locations in the slice — the new package —
must be determined. There are three rules which determine the final location of an
element, depending upon the visibility of the element in the original package. The rules
are: .

1 Elements which were hidden r;enwin hidden. This ensures that no previously
hidden elements becomes visible, a situation which would violate the information
hiding design of the original package.

2 Elements named in the slicing criterion remain visible. Recall that in order to be in
the slicing criterion in the first place, an element must be visible in the original
package. The definition of the interface slice requires that it is exactly the named
elements which the slice must export. Therefore the named elements must remain
visible in the slice.

3 Elements not in the slicing criterion which were visible become hidden. This allows
the slice to conform to one principle of good modular design, which is that only the
elements which a surrounding system uses should be exported by a module. It is
this principle which is so easily violated in standard reuse-based software develop-
ment. If our software system does not use foggle2’s reset operation, then the
package should not export the operation. If the operation is exported, then a
future maintainer will search in vain for its use in the system, because no such use
exists. This wastes time and hampers comprehension. Instead, this rule ensures
that the reset operation becomes hidden, so that the maintainer will know with a
glance that the operation is not used elsewhere in the system.

-16 -

3.7 An Extended Example

The examples above illustrate the general concept of mterface shcmg, but leave out some
important details. To fill in some of these details, we will next discuss a pair of generic
Ada packages which originated in the public domain.? These packages were explicitly
written to be used as building blocks for Ada programs, similarly to the components of
Booch [10] or Uhl and Schmid [23]. The first of the packages implements the a set
abstraction in the Ada package SetPkgTemplate. The package is instantiated by supply-
ing it with two parameters, the first being the type of element which the set is to contain,
and the second being a comparison function to determine the equality of two elements of
this type. The package provides all the operations necessary to create, manipulate, query,
and destroy sets. The specification of the set package is listed in Append1x A .

SetPkgTemplate is written to use a list abstraction as the underlying structure upon

which it builds the set ADT, and so the set package requires the second of the two generic

packages discussed here, which implements the list ADT as the Ada package ListPkgTem-
plate. This happens to be a singly-linked dynamic list implementation, although nothing

in SetPkgTemplate requires this to be the case. ListPkgTemplate exports all the opera- -

tions necessary to create, manipulate, query, and destroy lists. This package requires
three generic parameters. The first two are similar to the generic parameters of the set
package, namely, the type of element in the list and the equality function. The third
generic parameter is a copy function which gives the list package the ability to copy a list
element, to provide for one-level-deep copying of the list. The specification for the list-
package is listed in Appendix B.

3.8 A Single Level of Interface Slicing

Suppose that we wish to make use of sets and set operations in a program we are writing,
but we have need for only a few of the set operations, namely, in this example, create,
insert, and equal. In the repository we have available the source code for SetPkgTemplate;
by examining its specification we see that it does provide a set type and operations for
that type, and that in order to use SetPkgTemplate, we must supply the type ElemType.
Therefore, we wish to slice SetPkgTemplate using the interface slicing criterion (Create,

Insert, Equal, Set, ElemType). We want to include all the code necessary to allow me to
use these three operations and two types, but would like to have only the necessary code,
and no more. In order to slice the set package, we must examine the interface depen-
dence graph for the set package, which is shown in Figure 10. The three operations
Create, Insert, and Equal, and the types Set and ElemType are defined on lines 9, 11, 21,
6, and 3, respectively, of Appendix A. The transitive closure of these five nodes, corre-
sponding to the desired slice of the set package, is shown in Figure 11.

Out of the total of 16 subprograms, one of which is a generic parameter, on 151 lines of
code in the original package, the slice contains 8 subprograms on 84 lines of code. Thus
interface shcmg has reduced the number of subprograms and the number of lines of code
by a factor of 2 in this example. A comparison of Figure 10 vs. Figure 11 shows visually
the reduction in interface size of the sliced set package (see also Table 1, Page 24).

8 These packages were extracted and modified from the ASR repository on SIMTEL
20 and were written by B. Altus and R. Kownacki of Intermetrics.

-17 -

Equal (8, 8)

—> SetlIter

Next IsMember MakeSetIter Create
Equal (ET, ET) Union
Insert Copy
IsEmpty
Size
ElemTyps ¢—— Intersect > Bet € Destroy
Figure 10 Interface dependence graph for SetPkgTemplate
More
NoMore Equal (8, 8) > SetlIter
‘\\\\\\\\\ T
d ‘__:EE;:;:::><=::::::::——%
Next IsMenber MakeSetIterx Create
Insext
~ ~
EleaType Set

Figure 11 SetPkgTemplate sliced on (Create, Insert, Equal, Set, ElemType)

- 18 -

3.9 Name Overloading

In the previous section, to slice the Ada package SetPkgTemplate, we used the slicing
criterion (Create, Insert, Equal, Set, ElemType). Giving this exact slicing criterion to an
automatic slicing tool won’t work, however, because the name Equal is overloaded in the
package. Referring to the package specification in Appendix A, Equal appears on line 4
with the type signature

function: ElemType x ElemType — boolean,
while on line 21 it appears with the type signature
function: Set x Set — boolean.

Note that the interface dependence graph in Figure 10 has two separate nodes for the two
occurrences of the overloaded name Equal (in the figure, Set and ElemType as parameter
typemarks are abbreviated as S and ET, respectively). Since Equal is overloaded, the
slicing criterion listed above is ambiguous, and needs amplification with the argument
type signature of Equal. An unambiguous slicing criterion might appear as:

{Create():Set, Insert(Set,Eleme'pe), Equal(Set,Set):boolean, type Set, type Elem-
Type)

Henceforth we will use the shortest form which is unambiguous, e.g.:
{Create, Insert, Equal(Set,Set), Set, ElemType)

3.10 Syntactic Sugar

Up to this point in the discussion of interface slicing, none of the concepts presented have
been language-specific. While we are using Ada as the language of the examples, the
concepts are applicable to any language such as C++ or ML which includes such features
as separate compilation and specifications with type signatures. But while the concepts
are language-independent, a working interface slicing tool cannot be. This is because
each language has its own structure and syntax which must be respected, else the output
of the slicer will be syntactically incorrect and therefore useless.

Figure 5 (Page 10) lists a complete Ada package, while Figure 6 (Page 11) lists a slice of

that package. Lines 1, 6, 7, and 25 of Figure 5 appear in Figure 6, even though they are

not part of the transitive closure of the interface dependence graph of togglel upon which
the slice of Figure 6 is based. As with conventional slicers discussed in previous sections,
the interface slicer must keep track of the language syntax when generating the slice.

A slightly more difficult example of this occurs in SetPkgTemplate. Line 38 of that
specification (in Appendix A) is:

package ListPkg is new ListPkgTemplate(ElemType, Equal);

The purpose of this line is to instantiate the generic package ListPkgTemplate by
supplying it with the identifier ListPkg and the two parameters ElemType and Equal. As

-19 -

Ty S & a1 «vo@iro e g & @ g

I
hl

(

(

(

we have described it so far, the interface slicer is a pre-compilation text transforming tool.
As such, it does not have the information of the required typemark for the object indicated
by Equal in this context. By examining the specification of ListPkgTemplate, in Appendix
B, we can see that the proper generic parameter must be the function Equal which is
defined on line 4 of SetPkgTemplate. But the interface slicer does not know this, as it is
only considering SetPkgTemplate and does not have access to ListPkgTemplate. (We will
discuss ListPkgTemplate in the following sections.) Since the name Equal is overloaded,
the slicer doesn’t know to which Equal this line refers.

The interface slicer must include line 38 of SetPkgTemplate in the slice, as this is
syntactic sugar which it has no reason to slice out. But if it includes this line, which has
the name Equal in it, the slicer must also include the definition of Equal. Since Equal
here is ambiguous, the slicer must therefore include all definitions of Equal, to be sure of
including the correct one. The two definitions of Equal occur on lines 4 and 21 of
SetPkgTemplate.

Figure 11 (Page 18) shows the results of the reachability analysis of the interface depen-
dence graph of SetPkgTemplate. By this analysis, the interface slicer will include the
definition of Equal which occurs on line 21, as indicated by the appearance of the node
Equal (Set, Set) in the graph. However, node Equal (ElemType, ElemType) corresponding
to the definition of Equal on line 4, does not appear in the graph. This is because the
interface slicing algorithm gives no reason to include that node, as nothing in the slicing
criterion depends upon Equal (ElemType, ElemType) in SetPkgTemplate. In summary,
line 21 is included in the slice because of the transitive closure of the interface depen-
dence graph, and line 4, while not included in the sliced graph, is included in the final
text of the slice because of syntactic analysis. This difficulty is due to the fact that we are
describing the slicer as though it were considering SetPkgTemplate in isolation. In fact, it
is most reasonable to consider that a production interface slicer would be implemented as
a module of an integrated development environment, with full access to the program
databases and libraries of that environment. This would considerably reduce some of the
difficulties described here. To give the flavor of this, Section 3.12 will extend consider-
ation to ListPkgTemplate proper.

3.11 Number of Generic Parameters

A procedure which instantiates SetPkgTemplate has to supply an element type and an
equality function. In the previous examples, the number of these parameters did not
change due to interface slicing. However, it is easy to produce an example in which
interface slicing eliminates all references to a generic parameter and renders it unnec-
essary. The elimination of unnecessary parameters increases the usefulness of interface
slicing in reducing size and complexity of reused packages.

Consider, for example, a procedure which instantiates SetPkgTemplate and slices it on
(Create, Insert, Intersect, Size, Set, ElemType). The interface dependence graph of the set
package sliced on this criterion is shown in Figure 12 (cf. Figure 10 on Page 18, and
Figure 11). Notice that the generic function parameter Equal (ElemType, ElemType),
node S4, does not appear in the slice. This is because none of the operations in the slicing
criterion either directly or transitively reference the equality function. This means that
based strictly on a consideration of SetPkgTemplate sliced with this criterion, the generic

-920 -

parameter Equal is unnecessary and
can be omitted.

Create
A generic parameter cannot simply be
omitted from a standard non-defaulted Insert

Ada package instantiation, however.

For a procedure to instantiate

SetPkgTemplate, the compiler expects Size
a statement such as: [—

ElemType +——Intersect— Set
package SetPkg is new SetPkg-
Template (MyElementType, My-

Equal); Figure 12 SetPkgTemplate sliced on (Create,

If the MyEqual is dropped from the Insert, Intersect, Size, Set, ElemType)

line above, the compiler will generate

an error message complaining about a missing generic subprogram argument. While
defaulting generic parameters will help in some situations, in other cases there is no
appropriate default and attempting to include an inappropriate default parameter merely

to enable this feature of interface slicing would lead to serious programmatic as well as
stylistic errors.

In general, given a generic package the instantiation of which originally took the form:
package APkg is new APkgTemplate (p;,....Dp):

in which p,,...,p, represent generic parameters, after interface slicing we wish to instan-
tiate the package with some number of parameters removed by the interface slicing
process.

One approach to reconciling mismatched parameters has been advanced by Purtilo and
Atlee [20], who have developed the module interconnection language Nimble. Nimble was
designed to automatically adapt module interfaces which have large discrepancies in the
types and sizes of their parameters; merely reconciling their number, as required here, is
an easy job for Nimble. We therefore assume an automatic interface slicer would be
implemented with some mechanism perhaps similar to Nimble for reconciling mismatched
numbers of package parameters.

3.12 A Second Level of Slicing

While the slice in the example above represents a considerable reduction in the size of the
set package, a much greater overall savings can be realized if the slicing process is
extended to the list package upon which the set package is based. In addition, if the
language in use allows a direct named reference to program elements in other modules, as
was the case with the ambiguous reference to Equal discussed above, then the most
precise slice of one module may require information from other modules.

Just as the main program in the example above used functionality provided by the set
package, so the set package needs to use functionality provided by the list package. But

-21-

(N

i

¢

il

just as the main program above did not need all of the functionality of the set package but
only a subset, so too does the set package need only a subset of the functionality of the list
package. That subset, or slice, is based, as above, on the transitive closure of the slicing

- criterion of visible program elements exported by the list package which the set package

directly references. It does not matter which program elements the original unsliced set
package references. All that matters is which program elements the set package referenc-
es after being sliced.

The interface dependence graph of ListPkgTemplate is shown in Figure 13. In this figure,
for legibility, program element names are replaced with the line numbers of the package
as listed in Appendix B. In the case of SetPkgTemplate sliced on {Create, Insert, Equal
(Set, Set), Set, ElemType), the references from the new, sliced set package to the list
package consist of: List, EmptyList, Attach (ItemType, List): List, Create, Deleteltems,
FirstValue, IsEmpty, and IsInList. These appear on lines 5, 8, 31, 47, 56, 63, 66, and 69
of Appendix B, and are represented by the nodes of the same numbers in Figure 13.
These list program elements therefore exactly constitute the slicing criterion on which to
slice the list package, based on the original desire to employ the set package elements
Create, Insert, Equal(Set,Set), Set, and ElemType. The elements in ListPkgTemplate
which are referenced from SetPkgTemplate must be visible elements, appropriate for
inclusion in a slicing criterion, lest they could not be referenced by SetPkgTemplate in the
first place.

. '&"\\‘ L27
L3S)‘ w L66
L31 ’)"///“ X L47

L®7

L1s L43 6&——— L44é Lil17 L76

Figure 138 Interface dependence graph for ListPkgTemplate

-929.

The interface dependence graph of the original ListPkgTemplate is shown in Figure 13.
This package is large and complex enough to make manual editing a decidedly non-trivial
task requiring a major comprehension effort. However, slicing it using the criterion (List,
EmptyList, Attach (ItemType, List): List, Create, Deleteltems, FirstValue, IsEmpty,
IsInList) produces the much smaller graph shown in Figure 14. In this case, in fact, not
only is the resulting list package much smaller, but it also has a less complex interface
dependence graph. There is a correspondingly large reduction in overall size and
complexity of the source code which the slicer produces not only as output for the compiler
but equally importantly for the software engineer charged with development or mainte-
nance.

L105

LE6

L31 L47

\ L3 L39 L8

Figure 14 Sliced interface dependence graph of ListPkgTemplate

Slicing need not stop at two levels, of course, but can be continued to the maximum
number of levels of packages in a given software system. Weide, et al., imply that in a
mature reusable-component development environment, the number of levels in the
component composition hierarchy may be quite large [24]. While a comparison of

Figure 13 with Figure 14 gives an indication of the effect of interface slicing, we list in
Table 1 the actual change in size of the interface dependence graphs and of the source
and two examples of executable code for the original and sliced set and list packages in
the example above. The driver program was minimal in size while still making references
to every Set entity in the slicing criterion. We generated an executable on several
different platforms, and list two representative ones in the table: VAX Ada for VMS 5.5-2,
and Meridian Ada 4.1.3 for Sun-4 Unix. The numbers in the table indicate that slicing
reduced the size of the set and list component source code by more than half, and reduces

-923-

the size of a test driver program’s executable by up to 45%. In other words, at least 17%,
and up to 45%, of the executable for the simple unsliced example program produced by
standard commercial compilers is dead code. While numerical results from a larger
sample size of larger programs will have to await the completion of an automatic interface
slicer implementation, based on this example of source code and dead code reduction
alone, the interface slicer can help reduce the size and complexity of systems, and thus to
ease the comprehension problems in software maintenance.

IDG # IDG # source executable | executable

nodes edges lines bytes VMS bytes Unix
Full Set+List 19+39=58 29+69=98 151+4393=544 20000 49152
8liced Set+List 11+15=26 18+22=40 84+117=201 11000 40960
% Reduction 55% 59% 63% 45% 17%

Table 1 Size reductions in IDG and code of SetPkgTemplate and ListPkgTemplate

Because conventional slicing analyzes programs at the statement level, we term conven-
tional slicing a microanalysis technique. Current conventional slicing techniques depend
upon program dependence graph representations, the generation of which can be expen-
sive in time and space requirements. Thus there is some question about the practicality
of applying conventional slicing to very large programs. In contrast, we consider interface
slicing to be a macroanalysis technique in that it deals with programs at the package level
with no larger time or space requirements than a compiler requires, and so are appropri-
ate for application to even very large programs. Indeed, it is possible that the size
reduction of source code of a package after interface slicing will be sufficient to allow
conventional slicing to be performed on that package.

3.13 Dynamic Interface Slicing

So far, we have presented inter- . .

face slicing only from the per- package A 1is with A, B;)
spective of a static analysis, but rroced) package M is
it is possible to imagine dynam- | Procedure Fi begir

L e . e gin

ic interface slicing. Consider end A: .

the system in Figure 15. A ' if X then
strict static analysis, as de- package B is A.F;
scribed so far, would conclude ... else

that package M references both procedure G; B.G;
packages A and B, and that any ce end if;
system which includes M must end B; end M;

also include both A and B. But

if the value of the predicate X

were known, using the tech-

niques of dynamic slicing, then
it would be possible to conclude B ,
that either A or B, but not both, were necessary for inclusion. However, given the

Figure 15 Example for dynamic interface slicing

-24 -

applications currently envisioned for interface slicing, and the techniques currently used
to generate interface slicing as presented here, we do not foresee substantial practical use
for dynamic interface slicing. Indeed, it is not clear that many systems even contain
constructs such as shown in Figure 15, which would be amenable to dynamic interface
slicing.

4 Posets and Lattices of Slices

4.1 Decomposition Slice Poset

Gallagher and Lyle [13] use conventional static slicing as the basis of a total program
decomposition. The units of this program decomposition they term decomposition slices,
and they arrange these decomposition slices into a poset, the elements of which each
consist of a subset of the program statements.? Their intent is to ascertain the limits
past which a specific program modification cannot reach, enabling software maintainers to
focus on the region of the program which their change does affect, secure in the knowl-
edge that the change can have no linkages to — and thus can introduce no bugs in —
other parts of the program. Gallagher and Lyle accomplish this by using the poset of
decomposition slices to establish dependence and independence among program state-
ments.

Figure 16 shows an example decomposition slice poset.
The meaning of this figure is that the five nodes repre- A B c
sent the decomposition slices of a program, each using /
one of the program’s five variables as the slicing criteri- :

on. The set of statements in the slice E is wholly con- D
tained in each of the other three slices; the set of state- /
ments in D is wholly contained in C; D contains at least

one statement not in E. If the poset included a greatest

element (which would correspond to the original un-
decomposed program), it would be a lattice; rather, it has Figure 16 Decomposition
a set of maximal elements and is thus a poset. Since the slice poset

poset represents a total program decomposition, the

union of the three maximal slices yields the original

program (i.e, every program statement is in at least one maximal glice).® Using the
structured relationship of maximal and interior slices, Gallagher and Lyle proceed to

9 In the referenced paper, Gallagher and Lyle term this poset a lattice, but it is not a
lattice as presented. There is no upper bound of any pair of the maximal elements
in their structure, and thus the structure is not a lattice. Their conclusions about
the relationships among the elements of the poset remain valid, however.

10 Gallagher and Lyle fail to point out that if the poset produced by their decomposi-
tion is in fact a lattice, that is, if there is a single maximal element, then there are
no independent slices in the program. In this case, their procedure results in no
improvement for the maintenance process. A determination of how frequently this
is the case must await a real slicer.

- 95 -

e s & & @w en ew @0 ®m e & sl e s e e

{

i

characterize every program statement and variable as dependent or independent. With
the statements and variables so characterized, Gallagher and Lyle give precise rules
which state the kinds of program modifications which can be performed while still
guaranteeing that the modifications have no effect outside the maximal slice where the
modifications take place. The specific rules which they present are not of interest in this
discussion. What is of interest is their concept of total program decomposition yielding a
poset arrangement of slices, the relationship of which allows specific characterizations of
program elements, and thus new conclusions about those program elements.

4.2 A Lattice Construction Algorithm

Before we discuss interface slice lattices in the next section, we first take the time here to
discuss the construction of lattices in general. Because of the paucity of published lattice
algorithms, and of the desirability to experiment with a number of lattices during the
course of this investigation, we developed a lattice construction algorithm. While it was
not our intent to necessarily develop the most efficient algorithm possible, we believe that,
for an unordered set of nodes about which no prior knowledge is available, no algorithm
can substantially improve upon this one for time requirements. In a production imple-
mentation, however, more space-efficient techniques such as those of Ait-Kaci, et al.,
which use bit-vector representations of sets and which thereby accomplish very space-
efficient lattice representations might be more appropriate [1]. Although the researchers
of that paper do not present a lattice construction algorithm, once the lattice is built using
our algorithm, their techniques could then be used for representation and manipulation
purposes. Rather, our intent was to develop an algorithm which clearly and explicitly
built the lattice structure in order to 1) aid in visualizing the relationships among the
lattice elements, 2) provide a basis for reasoning about the program semantics inferred
from those relationships, and 3) provide a vehicle for experimenting with those relation-
ships. With appropriate small modifications, the same algorithm can be used to build a
graphical representation of a poset or a semilattice as well as a lattice.

The algorithm which we developed for constructing the lattice of interface slices is listed
in Figure 17.11 Recall that each lattice element is a set of program statements, and that
each element has associated with it a set of parents and a set of children which are other
lattice elements. This algorithm inserts a new set into the lattice by identifying the set of
parents and the set of children which the new set will have, and by removing parent and
child relations which would become transitive ancestor and descendant relations once the
new set is inserted. The algorithm listing here assumes that the set element type is a
code statement and that the poset partial ordering relation is subset. The algorithm
assumes an implementation in which each node’s set of parents and children is available

11 We implemented this algorithm in approximately 600 sloc of ANSI C. It is
interesting to note that an almost identical algorithm was implemented by Atkins
[4] in the Opal programming language of Servio Corporation’s GemStone Object-
Oriented Database Management System using only 25 sloc.

- 96 -

1 /* Find the proper place for NewSet in the lattice */
2
3 /* Find the set of parents for the new node */
4 ,
5 SetOfParentsForNewSet ¢« O
6 SetOfPotentialParents ¢« {Univ}
7 while SetOfPotentialParents # &
8 Anode ¢« a node removed from SetOfPotentialParents
9 foreach Achild in Anode’s set of children do
10 if NewSet = Achild
11 return (NewSet is already in the lattice)
12 if NewSet ¢ Achild
13 add Achild to SetOfPotentialParents
14 if no Achild was added to SetOfPotentialParents
15 add Anode to SetOfParentsForNewSet
16

17 /* Similarly find the set of children for the new node */

19 SetOfChildrenForNewSet «
20 SetOfPotentialChildren ¢« {Void}
21 while SetOfPotentialChildren # &

22 Anode ¢« a node removed from SetOfPotentialChildren
23 foreach Aparent in Anode’s set of parents do

24 if Aparent ¢ NewSet

25 add Aparent to SetOfPotentialChildren

26 if no Aparent was added to SetOfPotentialChildren
27 add Anode to SetOfChildrenForNewSet

28

29 /* Remove would-be transitive links between all nodes */
30 /* in SetOfParentsForNewSet and SetOfChildrenForNewSet */

32 foreach Pnode in SetOfParentsForNewSet do

33 foreach Cnode in SetOfChildrenForNewSet do

34 foreach Child in Pnode’s set of children do
35 if Child = Cnode

36 remove Pnode from Cnode’s set of parents
gg remove Cnode from Pnode’s set of children
33 /* Insert the NewSet into the lattice */

4

41 NewSet'’'s children ¢ SetOfChildrenForNewSet
42 NewSet'’s parents ¢« SetOfParentsForNewSet

Figure 17 A lattice construction algorithm

-27 -

Q@ g1 ®m ey &N Qe @@ 4«

(0

I

{1

i

for inspection and modification.!? Further, we stipulate the original existence of two
lattice nodes, a greatest node Univ which contains the set of all program statements, and
a least node Void which contains the empty set. Initially, Univ’s only child is Void, and
Void’s only parent is Univ. Univ’s set of parents and Void’s set of children are both
invariantly empty.

In the discussion of the algorithm which follows, we consider Univ to be at the “top” of the
lattice and Void to be at the “bottom,” and so all directed edges in the diagrams point
downwards. We use the terms node and set synonymously to refer to a lattice element.
The algorithm mainly consists of a pair of walks of the lattice, one starting at the top and
working down (lines 3-15) and the other starting at the bottom and working up (lines 17-
27). While this algorithm cannot be implemented with a strictly depth-first search
strategy, whether the walks are strictly breadth-first or of a hybrid nature depends upon
whether the sets SetOfPotentialParents and SetOfPotentialChildren in lines 6 and 20 are
implemented as queues or stacks respectively. We will describe the top-down walk in
detail; the bottom-up walk is essentially the same with the roles of parents and children
reversed.

The purpose of the top-down walk in the first section of the algorithm is to identify the
nodes which are to become parents of the new set to be inserted into the lattice. The
desired result of the walk is to identify all nodes a such that

1 a ¢ NewSet, and
2 there does not exist a node ¢ such that a ¢ ¢ ¢ NewSet.

At the start of the walk, line 6, Univ is the only element in SetOfPotentialParents, a set of
nodes which always satisfies 1, and for which 2 is true to the extent that the algorithm
has determined so far. The walk is implemented as a while loop, lines 7-15, which contin-
ues as long as there are still nodes in SetOfPotentialParents to consider. The body of the
loop consists of removing a node from the SetOfPotentialParents and examining each of its
children in relation to the NewSet. If any of the children is the same as NewSet (lines 10-
11), meaning that NewSet is already in the lattice, the algorithm terminates immediately,
as the definition of the lattice states that no two nodes are the same. However, if NewSet
is a subset of a child, that child is added to the SetOfPotentialParents, as NewSet by
definition must be a closest subset of each of its parents. At the end of each iteration of
the while loop (lines 14-15), all of the children of the node have been considered. If none
of them was a closer superset of NewSet than the node itself, then the node by definition
must be a parent of NewSet, and so is added to the SetOfParentsForNewSet. This discus-
sion assumes that SetOfPotentialParents and SetOfParentsForNewSet are implemented as
sets at least in the sense that duplicate elements are excluded. Otherwise, the same

12 The sets of parents and children in the lattice contain redundant information: if x
is a child of y, then y is a parent of x. Maintaining both sets makes the logic of the
algorithm much easier to follow, and makes the representation more explicit, at
the expense of the space and effort to store redundant information.

-98 -

element could appear multiple times in the SetOfParentsForNewSet, which violates the
assumption that if the edge a—b exists in the lattice, it is unique.

In the second section, the bottom-up walk in lines 19-27 uses the same principles to find
the SetOfChildrenForNewSet. The only notable difference is that the test for the prior
existence of NewSet in the lattice in lines 10-11 is not repeated in the bottom-up walk, as
the top-down walk is guaranteed to have found all such duplicates in the lattice.

At the conclusion of the two walks, all necessary information for inserting the NewSet into
its proper place in the lattice has been obtained and is stored in the sets
SetOfParentsForNewSet and SetOfChildrenForNewSet. This insertion is performed in the
fourth section of the algorithm, lines 39-42. The third section of the algorithm, lines 29-
37, is necessary to maintain the consistency of the lattice structure. While transitivity is
an inherent feature of the lattice (i.e., if a € b ¢ ¢ then a ¢ ¢), transitive relations are not
explicitly represented in the lattice. In fact, the definition of the lattice forbids the
representation of transitive relations. If Univ and Void are distinguished nodes whose
contents are never modified (as in this algorithm), then every node added to the lattice
would result in an inconsistent set of children for every parent of the new node, and an
inconsistent set of parents for every child of the new node. To see this, consider that
every pair of elements in the lattice a ¢ b such that inserting node ¢ resultsina ¢ ¢ ¢ b,
a must no longer have b as one of its children, and 4 can no longer have a as one of its
parents. Rather, b becomes a descendant of a, but the descendant relationship is not
explicitly represented in the lattice structure. This is illustrated in Figure 18.

\/\Y/ \/ \/

{1.2.3.4} (2.3.4.5}) (1.2.3.4} (2.8.4.5)
+ (2.3.4]) = {2.9.4]
(z 31 (3.4) (2.3} (3.4}

AV ANV

Figure 18 Elimination of transitive relations

Therefore, in the third section of the algorithm, it is necessary to do an exhaustive
pairwise comparison between every element in the SetOfParentsForNewSet and the
SetOfChildrenForNewSet. If any child of a member of the former is a member of the
latter, that parent-child relationship is dissolved (lines 36-37).

-29.

au @0 €00 e o s ®er @

1

{l

(l

¢

4.3 Interface Slice Lattice

Interface slices by themselves are interesting and useful, but when an interface slice is
presented as a standalone artifact it is difficult to understand its relationships to other
interface slices and to the original package. Also, as presented, each interface slice must
be computed afresh from the interface dependence graph as a transitive closure graph
operation. Might there be a less expensive method of generating interface slices? In
Section 3 we specifically mentioned two slices of the generic Ada package SetPkgTemplate.
These two slices were generated by the slicing criteria (Create, Insert, Equal (Set, Set),
Set, ElemType) and (Create, Insert, Intersect, Size, Set, ElemType), and are shown in
Figure 11 (Page 18) and Figure 12 (Page 21), respectively. The two slices are patently
different. Are they related? If so, what is their relationship? Do other interface slices of
the same package exist? If so, how many are there, and what can be said about their re-
lationships to other slices and to the original program?

In an attempt to answer these questions, we will discuss the arrangement of interface
slices into a lattice built using the technique of the previous section. Since all interface
slices, like all program slices generally, consist solely of subsets of the original set of
statements, they can be arranged into a lattice based on the poset of the original program
elements and the subset operation. More formally, however, we make the following
observation.

Proposition 1 Interface Slices Form a Lattice. Given a set S of program elements of a
module and the subset relation <, and the set T c 2° which is the set of interface slices of
the module, then the poset (T',c) is a lattice.

Proof: By definition, the restriction of ¢ to T is a partial ordering. By definition, the set
of interface slices of a module includes S, corresponding to the unsliced program, and I,
corresponding to the slice generated by the empty slicing criterion. But those two
elements are exactly the greatest and least elements of the lattice (25,c). Therefore,
(T,c) is a lattice. O

SetPkgTemplate has 19 visible elements. They are listed in Table 2, along with their line
number designations and their respective transitive closures. The second and third
columns of the table, taken together, constitute a bag of sets, one set per row. Each of
these sets can be considered an interface slice of the package whose slicing criterion is the
singleton listed in the second column of the table. The sets in this table form a poset,
from which a lattice can be constructed using the algorithm described above. The
algorithm adds the empty and universe sets, thus guaranteeing that the poset is a lattice.
A Hasse diagram of the lattice (with the universe set omitted for clarity) is shown in
Figure 19. (The arrows on the directed edges in this figure are also omitted for clarity; all
of the edges point downward.) The figure shows that nodes corresponding to certain
package elements (e.g., ElemType) appear with cardinality 1. This corresponds to the fact
that the Ada type ElemType can be exported by SetPkgTemplate alone, without any
dependence on other package elements. Other package elements do not appear as single-
tons in the graph (e.g., Intersect appears only in combination with ElementType and Set).
This corresponds to the fact that it is not possible to manually edit SetPkgTemplate to
retain the procedure Intersect, while eliminating ElementType and Set, and still have a
compilable package. A slice on the criterion (Intersect) will include the code defining
ElementType and Set.

-30 -

Name Line Transitive Closure
ElemType ,,4§§
Equal (ElemType, ElamType) s4 s3
Set _ 86
NoMore 87
SetIter s8
Create s9 S6
Insert s11 83,86
Delete 813 83,86
Intersect 815 83,86
Union 817 s6
copy 819 86
Equal (Set, Set) s21 83,86,87,88,825,830,832,834
IsEmpty 823 86
IsMember 835 83,86
Size 828 86
MakeSetIter 830 86,88
More 832 S8
Next 834 83,87
Destroy 836 86

Table 2 Visible elements of SetPkgTemplate

This is not to claim that slicing SetPkgTemplate on (ElemType) necessarily produces a
useful slice. In general, the minimum functionality set for a useful ADT must include at
least one constructor function and one observer function. An interface slicer could easily
ﬂag a slicing criterion, either manually or automatically generated, which fails to meet
minimum “usefulness” standards, or other measures of orthodoxy, indicating hkely design
flaws. Figure 19 contains a number of slices which do contain at least a constructor and
an observer, and which provide quite useful collections of functionalities.

Proposition 2 Smaller Subsets Do Not Exist. No non-empty interface slice can exist which
is a subset of the parents of @ in the interface slice lattice.

Proof: The construction of the slices in columns 2 and 3 of Table 2 originated with
singleton visible package elements and included only their transitive closures. Since the
transitive closure of a directed graph node is unique and the interface slice construction

algorithm is deterministic, no smaller interface slice based on singleton elements can

-31-

Qi o o sm o s

{7

o

ET, Set
Intersect
ET, Set,SetIter,NoMore get Set ET, Set
Equal (S,5),More, Next Create IsEmpty Set rngert ElemType
IsMember,MakeSetIter Destroy Equal (ET, ET)
Set Sat ET, Set
copy Size Delete
SetIter
More
Set,SetIter
MakeSetIter ET,Next
NoMore \
“‘l& Q%"“....I..h\\
SetIter NoMore Set ElemType
]

Figure 19 Poset of singleton visible elements of SetPkgTemplate (with & added)

exist. Since all non-singleton interface slices are equivalent to the set union of the
singleton slices, and set union is an operation of monotonically increasing cardinality, no
smaller slice can be generated. O

Definition 5 Strict Independence. For the purposes of interface slicing, a module element
is strictly independent if it appears in a slice which has & as its only child. A module
element is strictly dependent otherwise. O

In lattice terms, the only descendant of the node containing ElemType is @ and so
ElemType is independent, implying in package terms that ElemType does not depend on
any other package element. The element Intersect appears only in nodes having non-&
nodes as children, implying that Intersect depends on other package elements. A general-
ization of this observation leads to the following:

Proposition 3 Nodes Without Children. If the only child of a slice lattice node A is &, that

is, A is independent, then every element which appears in A has no dependences upon
any element not in A.

-32-

Proof: Let A have an element i. Assume that [is depehdent upon an element j in node B.
Then, by the construction of the interface dependence graph, there will be an edge from A
to B, i.e., B is a child of A. But this violates the assumption that the only child of A is @O

Proposition 4 Nodes With Children. At least one package element which appears in a
node with a non-@ child is a dependent element.

Proof: This is the converse of the previous Proposition. Let node A have elements i,...,k.
Assume that no element in i,...,k is dependent. Then, by the construction of the interface
dependence graph, the only child of A is @. But this violates the assumption that A has a
non-& child. O

Another observation which can be made from Figure 19 is that certain pairs of nodes have
a non-@ greatest lower bound (e.g., the g.Lb. of nodes {Set, Copy} and {Set, IsEmpty} is
{Set}) while for others the g.L.b. is @ (e.g., the nodes {Set, Copy} and (SetIter, More}. This
corresponds to the fact that the Ada code for the slices (Set, Copy) and (Set, IsEmpty)
have package elements in common, while the code for the slices (Set, Copy) and (Setlter,
More) is disjoint. Recall, however, that the unique g.1.b. for a pair of nodes is not
necessarily the same as the set of common lower bounds for the pair of nodes. For
example, consider the two nodes {ElementType, Set, IsMember} and {ElementType, Set,
Intersect}. These two nodes have a g.l.b. of &, but they are clearly not disjoint, having
ElementType and Set in common. This is reflected by the fact that the two nodes have a
non-empty set of common maximal lower bounds, namely {ElementType, Set}; by defini-
tion, this set is a cochain. This leads to the following: '

Definition 6 Mutual Independence. Two nodes which have a non-empty set of common
maximal lower bounds are mutually dependent. Two nodes which have @ as their set of
common maximal lower bounds are mutually independent.

These definitions are distinct from the definitions of strict independence and strict
dependence given previously. These definitions can be directly extended from pairs to sets
of mutually dependent and independent nodes; they will be used below for further results
derived from the lattice arrangement.

4.4 Generating All Possible Interface Slices

We turn now to a consideration of all possible interface slices of a module. While it turns
out that actually generating all possible interface slices is impractical for a production
development environment, as will be shown below, it is instructive to consider the process.
After a discussion of a teéhmque for generating dII possible interface slices, a process
which is very expensive in time and space requirements, we will describe a technique for

generatmg any desxred mterfaoe slice in hnear tnne

Proposmon 5 InterﬁweVShces Are a Finite Set. leen a set S of program elements of a
module, the set of interface slices of that module is finite. The set of interface slices is a
subset of a finite set which can be generated. -

Proof: Every interface slice of the module is some combmatlon of the finite members of S.
Therefore the set of interface slices of the module is finite. The lattice {2, [} contains
all possible combinations of the members of S. Therefore the set of interface slices is a

subset of the nodes in the lattice, and the lattice contains all interface slices. Since the

-33-

i

ioq

{

lattice {2S,c,ﬂ} can be generated by a combinatorial brute-force algorithm, it is possible to
generate all possible interface slices of the module. a

4.4.1 A Generation Technique

Unlike Weiser slicing in which it is undecidable to generate all possible slices, and unlike
Gallagher and Lyle’s decomposition slices which vary depending on the slicing technique
employed in their construction, this proposition guarantees that it is possible to generate
all possible interface slices. Unfortunately, the proposition does not indicate a method for
recognizing which of the lattice elements are in fact interface slices, and so does not
provide a useful generation algorithm. In addition, the proposition indicates a process
which is combinatorial in the number of program elements in the module.

All the information necessary to specifically generate just the interface slices is contained
in the interface dependence graph as discussed in Section 3. The graph for SetPkgTem-
plate is shown in Figure 10 (Page 18). Recall that an interface slice can be found by
taking the transitive closure of the slicing criterion which is a set of visible package ele-
ments in the interface dependence graph. It is obvious that generating all possible
interface slices can be accomplished simply by taking the transitive closure of all combina-
tions of visible package elements. Recall that taking the transitive closure of the desired
combination of package elements was how we generated the interface slices in Section 3.
Unfortunately, however, using this brute-force technique to generate all possible interface
slices requires time which is combinatorial in the number of visible elements. Even by
taking advantage of all the information in the lattice structure, it is not possible to
generate these slices in time less than combinatorial in the number of singleton interface
slices.

In fact, in the worst case this method based on lattice construction degrades to the time
requirement of the brute-force approach, even though this is improbable in practice. In
the worst case, for n visible package elements, there are 2" interface slices. For this to
occur, however, each element in the package would have to be strictly independent of all
others. But the whole philosophy of package modularization is to group program elements
which are related, and which thus tend strongly to have dependences among them. The
more dependences within the set of package elements, the fewer distinct interface slices
there are, and the better the time requirements of generating all possible interface slices.

While the combinatorial time required to actually generate all possible interface slices
makes the process impractical in a production system, the fact that it is possible to
generate all possible interface slices of a package allows us to use the process to aid in
determining relationships among the slices and the original package.

The key to generating these interface slices is to consider the poset of Figure 19 (plus the
empty set added to the bottom) as the “truncated” lower portion of the lattice of all
interface slices. We have already shown that the set of interface slices must form a
lattice. The task at hand is to generate the “missing” upper portion of the lattice. More
precisely, the poset of Figure 19 is a subset of the complete lattice which we desire to
construct, or at least to visualize. Again, in a production system we would expect an
efficient bit-vector representation to be used. We have used the explicit lattice represen-

-34-

tation to aid in the visualization of the process and its results. Before presenting the
process, a statement about the union of interface slices is necessary.

Proposition 6 Union of Interface Slices. Let M be a module, C, = (¢, e,,....e;) and C, =
{f1, fas-f3) e two interface slice criteria, and S; = M(C)) and S, = M(Cy), be the two
respective interface slices. Also let Cy; = C; U C, be the union of the two criteria. Then
S, US, = M(Cyp.
Proof? By definition,

S,US, = C,) UM(Cy)

S, US, = Mey) U M(e,,) U...UMee)) UMty UMepy U ... U Mc)
Because of the commutativity of set union, we have

S, US, = M(e,) UMfey) U ... UM(e) UM UM(fy U ...UM

8,US, = M(Cy) 0

In words, Proposition 6 states that the union of two interface slices based on two slicing
criteria is identical to the interface slice based on the union of the two slicing criteria.
The proof states that the interface slice based on C, is defined as the union of the
transitive closure of each of the individual elements e, Since union is commutative, the
order in which the transitive closure of each element and its subsequent union into the
interface slice is inconsequential, and similarly for the elements f; for the slice based on
C,. Because of the nature of interface slice construction, therefore, the two expressions S,
u 32 and M(C;) are computationally equivalent, and thus are identical.

To generate all interface slices, one can use an iterative process which continues until no
more slices are generated. The first iteration consists of a pairwise union of every set
originally produced by the transitive closure of the singleton visible package elements, the
result of each union compared with all existing sets to eliminate duplicate sets. Each
subsequent iteration consists of performing a pairwise union of all sets produced in the
previous iteration with the original sets, again comparing the results to the existing sets
to eliminate duplicates. The new sets which are not duplicates are the product of the
current iteration. Each iteration produces a new set of sets, each of which is inserted into
the growing lattice of interface slices. This insertion can use any appropriate lattice
construction algorithm, such as the one of the previous section. The result of this process
is a lattice, the least element of which is the empty set which corresponds to the empty
slicing criterion (), and the greatest element of which is the set of every package

element, which corresponds to the slicing criterion which lists every visible package
element, or equivalently, to the unsliced original package. Between these two nodes is
every possible interface slice.

4.4.2 An Example Lattice Completion

To illustrate the process of generating all interface slices, we shall use a contrived
example which is considerably smaller than SetPkgTemplate, which in the very first
iteration of the process grows to a size impossible to show in a figure. We shall return to
SethgTemplate in the next sectlon.

Consider the poset shown in Figure 20(a), in which the lowercase letters stand for
program elements. (Again in this figure, all the directed edges point down.) The poset
contains 5 sets; the least element of the empty set has been added to the diagram. The

-35-

Qe &g e @nr ey @nl e &ur W el e

L

pairwise union of these 5 sets results in the generation of 7 new sets which are shown
with the original 5 in Figure 20(b). The pairwise union of the 7 new sets with the original
5 produces 2 additional sets, as shown in the lattice of Figure 20(c). The pairwise union
of these last 2 with the original 5 produces no new sets, and so the iteration process ends.

abcde abcde
abce acde abce
abc ade cde abc ade cde ace abc
de de ae ce ac de ae ce ac
(]]]
(a) (b) (c)

Figure 20 Phases of construction of lattice of interface slices

This process can of course be applied to the poset of SetPkgTemplate which is shown in
Figure 19, but the results are too large to be displayed here, and dramatically illustrate
the impracticality of this generation technique in a real system. The process requires only
14 iterations (compared to the upper bound of 18) and produces 32,407 sets, i.e., the
package has 32,407 different interface slices. Thus, even though this number is much
smaller than the upper bound of 524,287, it is obvious that generating and storing all
possible slices for all packages is an impractical operation for a production development
environment.

4.4.3 Counting the Interface Slices

Even though generating and storing all the interface slices of a module may be impracti-
cal, it is possible to count the number of interface slices without actually generating them.
A dependence between two program elements can be phrased as a restriction which
eliminates some combinations of program elements from being a valid interface slice. In a
module with no dependences, and thus no restrictions on valid combinations of program

-36-

elements, every possible combination of program elements forms an interface slice. In
this case, the number of interface slices is simply 2'S! which forms an upper bound on
the number of interface slices of a module. (This number includes the original unsliced
module and the empty set.) Dependences among program elements in a module reduce
the actual number of interface slices from this upper bound.

A dependence can be phrased as: “program element d depends on program element e,”
with the meaning that in an interface slice, d cannot appear unless e also appears. This
situation is illustrated in Figure 20(a). This dependence, stated as a restriction, can take
the form: “restriction R, is a combination of elements including d but not including e,” or
more compactly, R, := d A ~e. No combination of program elements which satisfies the
condition stated in the restriction is an interface slice. Let the set of combinations of
program elements which do satisfy R, be denoted by A;. In this case, A, = {d, ad, bd, cd,
abd, acd, bcd, abcd}, and 1A, = 8. Note that none of these combinations appear in
Figure 20. If this were the only restriction in the module, then the total number of
interface slices of the module would be 2'S' - 14, 1.

In the example in Figure 20, there is a second restriction R, := b A -~a A —~c, corresponding
to which is A, = (b, ab, bc, bd, be, abd, abe, bed, bee, bde, abde, bede}. Since R, and R,
are the only two restrictions for this module, the set of all interface slices is therefore 25 .
A, - A,. According to the inclusion-exclusion principle of counting [18], the size of this set
is 2'57. 14,1 - 14,1 + 1A; NA,l. The Venn diagram in Figure 21 illustrates this
number of interface slices. More generally, given module M, with n program elements,
and dependences among those elements expressed in the form of restrictions R, ... R,,
which correspond to excluded combinations of elements A, ... A,, the number of interface
slices is:

2151 - 3 14| + T IANA] - o+ CD* T IANAN.NA, |

I 1#] i#J#...#n

For this example, the value of this expression is 25.8-12 + 3 = 15, which is exactly the
number of nodes shown in Figure 20.

For the interface slices of SetPkgTemplate, the restrictions can be read directly from
Table 2 (Page 31). The second line of that table would produce the restriction “a combina-
tion which includes the element Equal (ElemType, ElemType) but does not include the ele-
 ment ElemType,” or, S4 A ~S3. These restrictions denote sets of elements which do not
constitute interface slices, and which allow an expression of the actual number of
interface slices to be formulated. We must note, however, that evaluating the expression
thus formulated is in general a non-trivial task, and may in some cases be as compu-
tationally expensive as forming the interface slices directly, and then counting them, as
described in the previous section. ' . .-

4.5 Any Desired Interface Slice
The fact that there is a proof that every interface slice can be generated guarantees that
specific interface slices of interest can also be generated. Generating all possible slices is

-37-

g @1 @ @K &® W e e

il @y eE e &0 @ eW swl e

]

I

|
|

[

unnecessary, as any particular interface
slice can be generated as needed. In
Section 3, we discussed a technique for P S
generating interface slices which was
linear in the number of source state-
ments. However, it is possible, after a
linear-time scan, and the computation of
some sets, to generate any desired inter-
face slice in time which is linear in the
number of elements in the slicing crite-
rion. Each slice so generated can be
viewed in relation to any other using the
lattice as a structuring mechanism. AN A,

The result of Proposition 6 leads to a
less expensive technique for generating Figure 21 Restrictions on combinations of
interface slices than computing the program elements

transitive closure of the elements in the

slicing criterion. The first step of the technique is to generate and store the transitive
closures of all singleton visible elements of the module. This is exactly the information
shown in Table 2 (Page 31). Once this information is stored, all that is required to
generate an interface slice is to form the union of the elements in the interface criterion
and their respective transitive closures as shown in the table. For example, in Section 3,
we generated the interface slice of SetPkgTemplate on {Create, Insert, Equal (Set, Set),
Set, ElemType) by taking the transitive closure of the set of elements in the slicing
criterion. Depending upon the transitive closure algorithm used, this requires time from
O(n®) to O(ne). Proposition 6 asserts that instead, we can generate the interface slice by
taking the union of the transitive closures of each of the elements in the slicing criterion.
If these have already been pre-computed for each visible element in the module, then the
union can be computed in time linear in the number of elements in the slicing criterion.
In Section 3, the transitive closure method generated the interface slice (Set, ElemType,
Create, Insert, Equal (Set, Set), NoMore, Setlter, IsMember, MakeSetlIter, More, Next}, and
by consulting Table 2, it is clear that this is exactly the interface slice generated by the
union method as well.

In Section 3, we discussed two specific slices of interest of SetPkgTemplate. The mecha-
nisms are now in place to insert these two slices into the lattice and examine their import
and relationships. Figure 22 shows the lattice with these two slices in place. (In the
figure, ET is sometimes used for ElemType, to save space.)

4.6 Modifications in Interface Slices

Now that there is a process to generate interface slices of interest and a process to
arrange them in a lattice based on subset inclusion, what conclusions can be drawn about
the interface slices so generated and arranged? What information can be gleaned from
this arrangement? Of what use is this representation? Some answers to these questions
appear in this section, some are more properly discussed in the context of specific applica-
tions and so are deferred to a future report, and some will no doubt become apparent
during the course of further development of the theory and technology of interface slicing.

-38 -

ET, Set,SetIter,NoMore ElemType, Set, Intersect
Equal (Set, Set),More, Next Create,Insert,Size
IsMember,MakeSetIter

Create, Insert

ET, Set

Intersect
ET, Set,SetIter,NoMore Set Set
Equal (8, 8),More, Next Create IsEmpty Set 1ngert ElemType
IsMember,MakeSetIter Destroy Bqual (ET, ET)
Set Set Set ET, Set
Union Copy Size Delete
SetlIter ET, Set
More IsMember
Set,SetIter
MakeSetIter ET, Next
NoMore \\
BetIter NoMore Set ElemType

Figure 22 Figure 19 with two slices added

Proposition 7 Modifications in Mutually Independent Slices. Given two mutually
independent interface slices S, and S, of module M, a modification to S; which does not
add a reference to an element in S, has no effect on S,.

Proof: Since S, and S, are mutually independent, by definition they have & as their only
common maximal lower bound. By the construction algorithm, this means that for all
elements x in S, and for all elements y in S,, y ¢ ireflx). Therefore a modification in S,
cannot affect an element in S,, provided the modification does not add a new reference in
S, to an element to S,. O

~ This result can be extended directly to sets of mutually independent slices, so that given a
set S,,S,,...,S, of mutually independent interface slices, a modification to S, which does
not add a reference to any element in S,,...,S, has no effect on any of the S,,...,S,,.

The converse of this result is that given a pair of mutually dependent interface slices S,
and S,, a modification to S; may have an effect on S,, and thus call for an examination of
that effect. The arrangement of the slices into a lattice allows the determination of

mutual dependence by inspecting the set of common lower bounds of the nodes in question.

-39

gla @& @ @0 & el e e

e ed a v«

L MY

[

I

{

lf}‘

{

¢

)

{ i

(1]

(2]

(3]

(4]
[5]

[6]

(7]

[8]

[9]

[10]

(11]

[12]

References

H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. “Efficient implementation of lattice
operations,” ACM Transactions on Programming Languages and Systems, vol 11,
no 1, pp 115-146, January, 1989.

H. Agrawal, R. DeMillo, and E. Spafford. “Dynamic slicing in the presence of
unconstrained pointers,” Technical Report SERC-TR-93-P, Software Engineering
Research Center, Purdue University, West Layfayette, Indiana, July 1991.

H. Agrawal and J. Horgan. “Dynamic program slicing,” Technical Report SERC-TR-
56-P, Software Engineering Research Center, Purdue University, West Layfayette,
Indiana, December 1989.

dJ. Atkins. Personal communication, January 1993.

L. Badger and M. Weiser. “Minimizing communication for synchronizing parallel
dataflow programs,” Proceedings of the International Conference on Parallel
Processing, (St. Charles), pp 122-126, 1988.

J. Beck. “Interface slicing: a static program analysis tool for software engineering,”
Ph.D. Dissertation, Department of Statistics and Computer Science, West Virginia
University, Morgantown, WV, May 1993.

J. Beck and D. Eichmann. “Program and interface slicing for reverse engineering,”
Proceedings of the Working Conference on Reverse Engineering, (Baltimore, 21-23
May), and Proceedings of the 15th International Conference on Software Engineer-
ing, (Baltimore, 17-21 May), 1993.

J. Bergeretti and B. Carré. “Information-flow and data-flow analysis of while-
programs,” ACM Transactions on Programming Languages and Systems, vol 7, no
1, pp 37-61, January 1985.

T. Biggerstaff and A. Perlis. Software Reusability, Vol 1, Addison-Wesley, Reading,
MA, 1989.

G. Booch. Software Engineering with Ada, Benjamin-Cummings, Menlo Park, CA,
1983.

Department of Defense. “DoD Software Reuse Vision and Strategy,” CrossTalk, no
37, pp 2-8, October 1992.

D. Eichmann and J. Beck. “Balancing generality and specificity in component-

based reuse,” submitted for publication to International Journal of Software
Engineering and Knowledge Engineering, May 1992, under revision.

-40 -

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21)

[22]

[23]

(24]

(25]

K. Gallagher and J . Lyle. “Using program slicing in software maintenance,” IEEE
Transactions on Software Engineering, vol 17, no 8, pp 751-761, August 1991.

M. Hecht. Flow Analysis of Computer Programs, Elsevier North-Holland, New
York, 1977.

S. Horwitz, T. Reps, and D. Binkley. “Interprocedural slicing using dependence
graphs,” ACM Transactions on Programming Languages and Systems, vol 12, no 1,
pp 26-60, January 1990.

B. Korel and J. Laski. “Dynamic program slicing,” Information Processing Letters,
vol 29, no 3, pp 155-163, October 1988.

W. Kozaczynski, J. Ning, and A. Engberts. “Program concept recognition and
transformation,” IEEE Transactions on Software Engineering, vol 18, no 12,
December 1992.

C. Liu. Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

A. Podgurski and L. Clarke. “A formal model of program dependences and its
implications for software testing, debugging, and maintenance,” IEEE Transactions
on Software Engineering, vol 16, no 9, pp 965-979, September, 1990.

J. Purtilo and J. Atlee. “Module reuse by interface adaptation,” Software - Practice
and Experience, vol 21, no 6, pp 539-556, June 1991.

K. Smith. Application Engineering With Domain-Specific Reuse, Course Descrip-
tion, Central Archive for Reusable Defense Software (CARDS), STARS-AC-
04102B/001/00 6 March 1993.

M. Soffa. “A framework for generalized slicing,” an address to the Computer
Science Department, West Virginia University, Morgantown, WV, 2 February 1993.

J. Uhl and H. Schmid. “A systematic catalogue of reusable abstract data types,”
Lecture Notes in Computer Science vol 460, Goos and Hartmanis, eds., Springer-
Verlag, Berlin, 1990.

B. Weide, W. Ogden, and S. Zweben. “Reusable software components,” in M. Yovits
(ed.), Advances in Computers, Academic Press, Orlando, 1991.

M. Weiser. “Program slicing,” IEEE Transactions on Software Engineering, vol SE-
10, no 4, pp 352-357, July 1984.

-41-

wim oww Qe @ s i WK

¢

WSO WP

SNSonuntb Wi e

Appendix A: Ada Specification of SetPkgTemplate

with ListPkgTemplate;
generic

type ElemType is private;

with function Equal (el
package SetPkgTemplate is
type Set is private;
NoMore: exception;
type Setlter is privat
function Create
return Set;
procedure Insert(s: in
e: in
procedure Delete(s: in
e: in
function Intersect(sl,
return Set;
function Union{sl, s2:
return Set;
function Copy(s: Set)
return Set;
function Equal(sl, s2:
return boolean;

, e2: ElemType)

e;

out Set;
ElemType) ;
out Set;
ElemType) ;
s2: Set)

Set)

Set)

function IsSEmpty(s: Set)

return boolean;

function IsMember(s: Set;
e: ElemType)

return boolean;
function Size(s: Set)

return natural;
function MakeSetIter(s

return SetlIter;

: Set)

function More(iter: Setlter)

return boolean;

procedure Next (iter: in out SetIter;

e: out

procedure Destroy(s: in out Set);

private

package ListPkg is new ListPkgTemplate (ElemType, Equal);

use ListPkg;
type Set is new List;

type Setlter is new List;

end SetPkgTemplate;

ElemType) ;

return boolean;

Appendix B: Ada Specification of ListPkgTemplate

generic

type ItemType is private;

with function Equal (X,Y: in ItemType) return boolean;

package ListPkgTemplate is
type List
type ListIter

is private;
is private;

Circularlist rexception;

- 42 -

EmptyList

ItemNotPresent

NoMore
procedure Attach(

) :

Listl:
List2:

function Attach({
Elementl: in ItemType;
Element2: in ItemType
) return List;

procedure Attach(
L: in out List;

)i

Element: in

procedure Attach(

)i
function

) return
function

) return
function

} return
function

L:

) return
generic

with function Copy (I:

function

} return
function

Element: in
L: in

Attach (
Listl: in
List2: in
List;
Attach (
Element: in
L: in
List;
Attach (
L: in
Element: in
List;
Copy (

in List
List;

CopyDeep (

:exception;
:exception;
rexception;

in out List;
in List

ItemType

ItemType;

out List

List;
List

ItemType;
List

List;
ItemType

L: in List

List;
Create

return List; -

procedure DeleteHead(

)

procedure Deleteltem(

L:

L: in out List

in out List;

Element: in

)i

ItemType

procedure DeleteItems(
in out List;
Element: in

L:

)i

procedure Destroy(
L: in out List

);
function

FirstvValue(

ItemType

-43 -

in ItemType) return ItemType;

aug e o e e &« ®on &0 e e an

) return
function

) return
function
) return

function

) return
function

) return
function

) return
function

) return

L: in List
ItemType;
IsEmpty (
L: in
boolean;
IsInList (
L: in
Element: in
boolean;
LastValue (

L: in List
ItemType;
Length(

L: in List
integer;
MakeListIter(
L: in List
ListIter;
More (

L: in ListIter
boolean;

List

List;

ItemType

procedure Next (
Place: in out ListIter;
Info: out ItemType
);
procedure ReplaceHead(
L: in out List;
Info: in ItemType
)
procedure ReplaceTail (
L: in out List;
NewTail: in List
)i
function Tail(
L: in List
) return List;
function Equal(
Listl: in List;
List2: in List
) return boolean;
private
type Cell;
type List is access Cell;
type Cell is
record
Info: ItemType;
Next: List;
end record;
type ListIter is new List;
end ListPkgTemplate;

